SECURITY TEAM

PALO IT Cyber Security Services

Andres Fernandez CISO

Security strategy : Principle

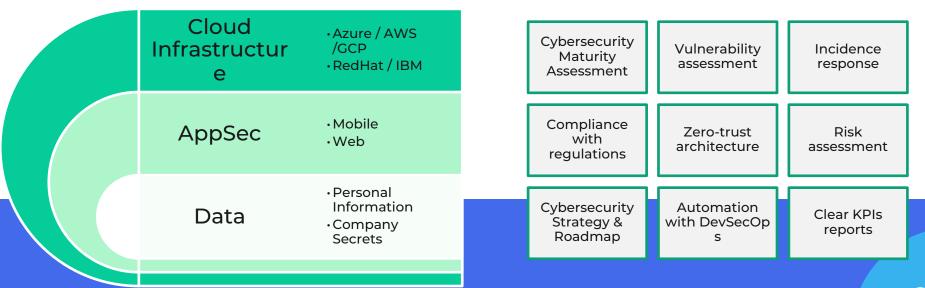
Cybersecurity is not the business.

لَّ should be **allowing the business** to make risk-informed decisions while delivering value to customers and stakeholders

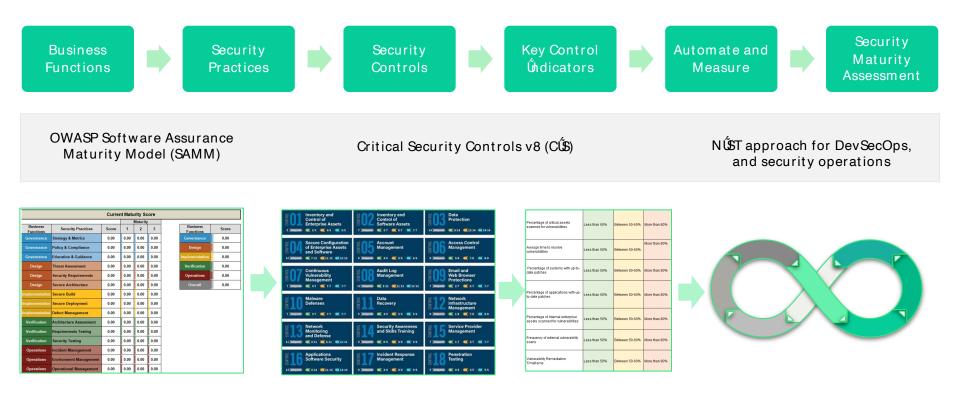
What areas do we cover?

	AppSec	Physical Únfrastructure	Cloud Únfrastructure	Policies and Regulations Compliance
Product Level	✓ DevSecOps	 ✓ Routers ✓ Host firewall ✓ CCTV ✓ Fingerprint 	✓ AWS ✓ GCP ✓ Azure ✓ RedHat, ŰBM	✓ PDPA/GDPR ✓ TRM (MAS) ✓ ÚSO 27001
Enterprise Level		 ✓ End-user devices (laptops, mobile) 	✓ o365 ✓ SharePoint	✓ SOC 2 ✓ CÚS ✓ NÚST 800-53

Where a Community of (Security) Practices, Integrates with the team and takes care of the security posture of the project, growing security champions.



n: CONFIDENTIAL (sensitive business information, the level of protection is dictated by legal agreements)


What do you get?

End to end Security in all project's stages

People, technology, processes

How do we do it?

Information Classification: CONFIDENTIAL (sensitive business information, the level of protection is dictated by legal agreements)

Secure AI Environments

What problem are we trying to solve?

- Data leakage. Training sensitive data could be leaked to unauthorized users.
- Vulnerable Infrastructure. External actors could break into the environment due to account takeover or vulnerable architecture.

Example Scenario

Email triage system so that customers with some of the common queries (such as a change of home address) could be automatically directed towards a web form that would resolve their query

	R
	=
	Ξ

Incoming emails

Classified according to customer intent

Those customers who can solve their problem with a simple web form are directed to the correct form.

Information Classification: CONFIDENTIAL (sensitive business information, the level of protection is dictated by legal agreements)

Compliance Problems

- The users **have not consented** for their emails to be stored. I cannot store it indefinitely. It must be deleted.
- Under the GDPR's **right to be forgotten**, a user can request that the organization delete all of their personal data. If a user were to submit such a request, **how would I track down all places** that the personal data has permeated to in the machine learning pipeline? It must be possible to trace all copies of an email in all datasets.
- Can any sensitive data be reproduced from the model? For example, if a customer's email address was stored in a model as a word in its vocabulary. We must take care to ensure that nobody could reconstruct any sensitive information from a trained model.

Solutions

Technique	Pros	Cons
1. Delete the dataset Once the machine learning model has been trained, the data scientist must delete the complete dataset.	if all data is truly deleted, then there is no way that the data can leak, and the "right to be forgotten" is no longer an issue.	If the project were to resume in future, you would need to re- annotate a new dataset.
2. Anonymise (mask) data Process all emails using a data anonymization algorithm to remove names, addresses or other sensitive information	If no sensitive data goes anywhere near the machine learning model, it cannot remember anything it shouldn't	What remains may not be sufficient to train an accurate machine learning model. Is difficult, time-consuming, and it is possible to accidentally leave a sensitive piece of information in
3. Store only IDs which can be used to reconstruct data (embeddings) Annotate the data and then delete it, storing only a hash or ID of the original information, so that the training data can be easily reconstructed but it is not stored in your machine learning system	The training data can be re-built provided the emails have not been deleted from the email server. This means that the machine learning project does not rely on any extra copies of data.	If a hacker got hold of your hashed database as well as a database of email addresses from another company, they could hash all those email addresses and cross check them against your database and reconstruct the original email addresses.

Solutions

	Pros	Cons
4. Encrypt or transform the data and work on it in encrypted space (homomorphic encryption) Obfuscate a sensitive dataset in such a way, that the sensitive data can't be reconstructed, but machine learning can still learn from it	A simple way of achieving the same result is to transform numeric fields using <u>Principal Component Analysis</u> . For example, a transformed value could be 2 * age + 1.5* salary + 0.9 * latitude, which would be very hard to map back to an individual due to the many-to-one nature of the transformation.	Homomorphic encryption is often very hard to do
5. Automated security and resilient. Automated AI driven chaos testing engineering with prompts inputs. Brute force prompts to ensure there is not way to retrieve sensitive data.		

Solutions

Technique	
Strengthen security measures in communication	In addition to ensuring that no data is copied unnecessarily, or checked into repositories, there are other routine security measures which need to be taken in the case of sensitive training data. For example, any API endpoints must be secured with SSL and HTTPS, and you should not share data over third-party services such as GitHub or Gmail.
Keep sensitive data in a silo and don't allow data scientists to access it directly, but let them experiment on it by submitting jobs to a secure platform	It is also possible to keep the sensitive data in a safe repository where researchers cannot access it directly, but they can submit experiments to it and perform statistical tests
Strong access control	
Zero trust architecture	

Secure System Development Lyfecycle (SDLC)

Automated security

Phase	Implementation		
Plan	Threat modelling		
Design	Follow zero trust security practices		
Code	Source Code Review for every pull request		
	IDE review integration		
Build	Static security test		
	Static Application Security Testing (SAST) tools to detect security vulnerabilities in proprietary code by scanning an application's code for flaws that are indicative of		
	security vulnerabilities while the code is still in a static/non-running state		
	Snyk rules: <u>Security Rules used by Snyk Code - Snyk User Docs</u>		
Build	Secrets scanning		
	Snyk rules: Security Rules used by Snyk Code - Snyk User Docs		
Build	Software Composition Analysis (SCA)		
	We automate the entire process of managing open-source components, including selection, alerting on any security or compliance issues, or even blocking them from		
	the code.		
	Image scanning - Snyk		
	Open-Source Dependencies scanning - Snyk		
Build	Break the build analysis		
	Every Pull Request triggers security test		
	PR only allowed to merge if all security gates are green		

Implementation and Improvement

Automated security

Phase	Implementation	
Test	Penetration Testing	
	Pen tests are either performed annually or when major releases. Includes a follow-up regression testing to validate that the mitigating actions are implemented effectively.	
Test	Certificate on a web server	
	Test secure strength of certificates	
Release	Infrastructure configuration	
	Implement automated tools based on the chosen technologies to implement security configuration baselines such as CIS controls.	
Release	Legitimate artifacts are deployed	
	Sign the generated artifact and validate signature before deploying into the target environment.	
Operate	Incident Response	
	Defined process to define the incidence response lifecycle	
Operate	Change Management	
	Defined process to evaluate risk assessment when making changes to prevent adding vulnerabilities	
Operate	Patch Management	
	Automated tooling are implemented to detect available patches	
Monitor	SIEM	
	Correlate all logs in a central location to establish normal and abnormal behaviors and create alerts.	
Monitor	Vulnerability Assessment	
	A vulnerability assessment report is used to take appropriate risk mitigation actions and make risk-based decisions regarding the continued operations of the system and	

P

PALO IT is DPTM (Data Protection Trustmark) Certified Organization

Responsible Data Protection Practices in our Development

- The DPTM (Data Protection Trustmark), certifies the soundness of our data protection policies and practices.
- In today's data-driven digital economy, consumer trust is essential to deploy innovative technology that makes use of personal data to deliver more personalised services.
- You can rest assured that an organisation certified with the DPTM has put in place responsible data protection practices and will take better care of your personal data.

